Цикл де Брёйна, трабл с вызовом рекурсии - C#
Формулировка задачи:
Перевожу с питона на шарп цикл Де Брейна, на английской версии лежит скрипт, который приведен ниже (слегка его подчистил до неоходимого функционала).
Собственно в самом цикле неоднократно происходят вызовы db(x,y), а в шарпе код как будто игнорирует эту инструкцию и спокойно выполняет код дальше. При одинаковых параметрах k n = 2 2, питон выдает необходимые 0011, шарп выдает 0100, поскольку выполняет db единожды, ходя должен минимум трижды.
Что я делаю не так? Возможно кривой перевод программы, но питон не знаю и не разбирался до сегодняшнего дня, пытался даже вызвать из db другой метод - игнорирует.
def de_bruijn(k, n):
"""
De Bruijn sequence for alphabet k
and subsequences of length n.
"""
alphabet = list(map(str, range(k)))
a = [0] * k * n
sequence = []
def db(t, p):
if t > n:
if n % p == 0:
sequence.extend(a[1:p + 1])
else:
a[t] = a[t - p]
db(t + 1, p)
for j in range(a[t - p] + 1, k):
a[t] = j
db(t + 1, t)
db(1, 1)
return "".join(alphabet[i] for i in sequence)
print(de_bruijn(2, 2))static int k=2, n=2;
int[] a = new int[k * n];
static List<int> sequence = new List<int>();
void db(int t, int p)
{
if (t > p)
{
if (n % p==0)
{
for (int i = 1; i >= p + 1; i++)
{
sequence.Add(a[i]);
}
}
}
else
{
a[t] = a[t - p];
db(t + 1, p);
for (int j = a[t - p] + 1; j < k; j++)
{
a[t] = j;
db(t + 1, t);
}
}
}
private void button1_Click(object sender, EventArgs e)
{
db(1, 1);
string s = string.Empty;
for (int i = 0; i < a.Length; i++)
{
s += a[i];
}
textBox1.Text = "" + s;
}Решение задачи: «Цикл де Брёйна, трабл с вызовом рекурсии»
textual
Листинг программы
using System;
using Google.OrTools.ConstraintSolver;
public class DeBruijn
{
// [url]https://github.com/google/or-tools/releases[/url]
/**
*
* ToNum(solver, a, num, base)
*
* channelling between the array a and the number num.
*
*/
private static Constraint ToNum(IntVar[] a, IntVar num, int bbase)
{
int len = a.Length;
IntVar[] tmp = new IntVar[len];
for (int i = 0; i < len; i++)
{
tmp[i] = (a[i] * (int)Math.Pow(bbase, (len - i - 1))).Var();
}
return tmp.Sum() == num;
}
/**
*
* Implements "arbitrary" de Bruijn sequences.
* See [url]http://www.hakank.org/or-tools/debruijn_binary.py[/url]
*
*/
private static void Solve(int bbase, int n, int m)
{
Solver solver = new Solver("DeBruijn");
// Ensure that the number of each digit in bin_code is
// the same. Nice feature, but it can slow things down...
bool check_same_gcc = false; // true;
//
// Decision variables
//
IntVar[] x = solver.MakeIntVarArray(m, 0, (int)Math.Pow(bbase, n) - 1, "x");
IntVar[,] binary = solver.MakeIntVarMatrix(m, n, 0, bbase - 1, "binary");
// this is the de Bruijn sequence
IntVar[] bin_code =
solver.MakeIntVarArray(m, 0, bbase - 1, "bin_code");
// occurences of each number in bin_code
IntVar[] gcc = solver.MakeIntVarArray(bbase, 0, m, "gcc");
// for the branching
IntVar[] all = new IntVar[2 * m + bbase];
for (int i = 0; i < m; i++)
{
all[i] = x[i];
all[m + i] = bin_code[i];
}
for (int i = 0; i < bbase; i++)
{
all[2 * m + i] = gcc[i];
}
//
// Constraints
//
solver.Add(x.AllDifferent());
// converts x <-> binary
for (int i = 0; i < m; i++)
{
IntVar[] t = new IntVar[n];
for (int j = 0; j < n; j++)
{
t[j] = binary[i, j];
}
solver.Add(ToNum(t, x[i], bbase));
}
// the de Bruijn condition:
// the first elements in binary[i] is the same as the last
// elements in binary[i-1]
for (int i = 1; i < m; i++)
{
for (int j = 1; j < n; j++)
{
solver.Add(binary[i - 1, j] == binary[i, j - 1]);
}
}
// ... and around the corner
for (int j = 1; j < n; j++)
{
solver.Add(binary[m - 1, j] == binary[0, j - 1]);
}
// converts binary -> bin_code (de Bruijn sequence)
for (int i = 0; i < m; i++)
{
solver.Add(bin_code[i] == binary[i, 0]);
}
// extra: ensure that all the numbers in the de Bruijn sequence
// (bin_code) has the same occurrences (if check_same_gcc is True
// and mathematically possible)
solver.Add(bin_code.Distribute(gcc));
if (check_same_gcc && m % bbase == 0)
{
for (int i = 1; i < bbase; i++)
{
solver.Add(gcc[i] == gcc[i - 1]);
}
}
// symmetry breaking:
// the minimum value of x should be first
// solver.Add(x[0] == x.Min());
//
// Search
//
DecisionBuilder db = solver.MakePhase(all,
Solver.CHOOSE_MIN_SIZE_LOWEST_MAX,
Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
Console.Write("x: ");
for (int i = 0; i < m; i++)
{
Console.Write(x[i].Value() + " ");
}
Console.Write("\nde Bruijn sequence:");
for (int i = 0; i < m; i++)
{
Console.Write(bin_code[i].Value() + " ");
}
Console.Write("\ngcc: ");
for (int i = 0; i < bbase; i++)
{
Console.Write(gcc[i].Value() + " ");
}
Console.WriteLine("\n");
// for debugging etc: show the full binary table
/*
Console.Write("binary:");
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
Console.Write(binary[i][j].Value() + " ");
}
Console.WriteLine();
}
Console.WriteLine();
*/
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
public static void Main(String[] args)
{
int bbase = 2;
int n = 3;
int m = 8;
if (args.Length > 0)
{
bbase = Convert.ToInt32(args[0]);
}
if (args.Length > 1)
{
n = Convert.ToInt32(args[1]);
}
if (args.Length > 2)
{
m = Convert.ToInt32(args[2]);
}
Solve(bbase, n, m);
}
}