Помогите переписать процедуру Spline с Pascal на C#
Формулировка задачи:
Помогите пожалуйста переписать процедуру Spline на C#
вот код паскаль:
Vector = Array [0..640] of Real;
Vec = Array [0..30] of Real;
Matr = Array [ 1..30,1..30] of Real; Ne,Ngr :Integer;
Xe,Ye,Xg,Yg:Vector;
M :Integer;
al,bl:Real;
K:Vec;
Procedure Spline(Xe, Ye : Vector; Ne, Ngr : Integer; Var Xg, Yg : Vector);
Var a, b, c, d : Vec;
h, R : Real;
i, j, L : Integer;
//cubspln
Procedure CubSpln(Xe,Ye:Vector;Ne:Integer;Var a,b,c,d:Vec);
Var h, Y : Vec;
Ma : Matr;
i, j : Integer;
R, Q : Real;
//progonka
Procedure Progonka (A:Matr; b:Vec; N:Integer; Var X:Vec);
Var Alp, Bet : Vec;
R : Real;
i : Integer;
Begin
Alp[1] := - A[1, 2] / A[1, 1];
Bet[1] := b[1] / A[1, 1];
For i := 2 to N-1 do
Begin
R := A[i,i] + Alp[i - 1] * A[i, i - 1];
Alp[i] := - A[i, i + 1] / R;
Bet [i] := (b[i] - A[i, i - 1] * Bet[i - 1]) / R
End;
X[N] := (B[N] - A[N, N - 1] * Bet[N - 1]) / (A[N, N]
+ Alp[N - 1] * A[N, N - 1]);
For i := N-1 downto 1 do
X[i] := Alp [i] * X [i + 1] + Bet [i]
End;
//progonka
Begin
Ne := Ne - 1;
For i := 1 to Ne do
Begin
H[i] := Xe[i] - Xe[i - 1];
a[i] := Ye[i]
End;
For i := 1 to Ne - 1 do
For j := 1 to Ne - 1 do
If i=j then
Begin
R := H[i]; Q :=H[i + 1];
Ma[i, i] := 2 * (R + Q);
Y[i] := 6*((Ye[i+1]-Ye[i])/Q-(Ye[i]-Ye[i-1])/R);
End Else
Begin
Q := H[i + 1];
Ma[j, i] := 0;
Ma[i + 1, i] := Q;
Ma[i, i + 1] := Q
End;
Progonka (Ma,Y,Ne-1,c);
c[0] := 0; c[Ne] := 0;
For i:=1 to Ne do
Begin
R := h[i];
d[i] := (c[i] - c[i-1]) / R;
b[i] := R*c[i]/2 - Sqr(R)*d[i]/6+(Ye[i] - Ye[i-1])/R
End;
End;
//cubspln
Begin
CubSpln (Xe, Ye, Ne, a, b, c, d);
L := 1;
h := (bl - al) / Ngr;
Xg[0]:= al;
For i := 0 to Ngr - 1 do
Begin
YG[i] := a[L] + b[L] * (Xg[i] - Xe[L])+ c[L] * Sqr(Xg[i] -
Xe[L])/2 + d[L]*Sqr(Xg[i] - Xe[L])*(Xg[i] - Xe[L])/6;
Xg[i + 1] := Xg[i] + h;
If Xg[i] > Xe [L] then L := L + 1
End
END;
//end splineРешение задачи: «Помогите переписать процедуру Spline с Pascal на C#»
textual
Листинг программы
private void Progonka(Double[,] A, Double[] B, Int32 N, Double[] X)
{
Double[] Alp = new Double[N];
Double[] Bet = new Double[N];
Double R;
Int32 i;
Alp[0] = -A[0, 1] / A[0, 0];
Bet[0] = B[0] / A[0, 0];
for (i = 1; i < N; i++)
{
R = A[i, i] + Alp[i - 1] * A[i, i - 1];
Alp[i] = -A[i, i + 1] / R;
Bet[i] = (B[i] - A[i, i - 1] * Bet[i - 1]) / R;
}
X[N] = (B[N] - A[N, N - 1] * Bet[N - 1]) / (A[N, N] + Alp[N - 1] * A[N, N - 1]);
for (i = N - 1; i >= 0; i--)
{
X[i] = Alp[i] * X[i + 1] + Bet[i];
}
}
private void CubSpline(Double[] Xe, Double[] Ye, Int32 Ne, Double[] a, Double[] b, Double[] c, Double[] d)
{
Double[,] Ma = new Double[50, 50];
Double[] h = new Double[40];
Double[] Y = new Double[40];
Int32 i = 0, j = 0;
Double R = 0, Q = 0;
Ne--;
for (i = 1; i <= Ne - 1; i++)
{
h[i] = Xe[i] = Xe[i - 1];
a[i] = Ye[i];
}
for ( i = 1; i <= Ne - 1; i++)
for ( j = 1; j <= Ne - 1; j++)
{
if (i == j)
{
R = h[i];
Q = h[i + 1];
Ma[i, i] = 2 * (R + Q);
Y[i] = 6 * ((Ye[i + 1] - Ye[i]) / Q - (Ye[i] - Ye[i - 1]) / R);//Ye[i-1]???
}
else
{
Q = h[i + 1];//
Ma[j, i] = 0;
Ma[i + 1, i] = Q;
Ma[i, i + 1] = Q;
}
}
Progonka(Ma, Y, Ne-1, c);
c[0] = 0;
c[Ne] = 0;
for (i = 1; i <= Ne; i++)
{
R = h[i];
d[i] = (c[i] - c[i-1]) / R;
b[i] = R * c[i] / 2 - R * R * d[i] / 6 + (Ye[i] - Ye[i - 1]) / R;
}
}
private void TabSpline(Double[] Xe, Double[] Ye, Int32 Ne, Int32 Ngr ,Double[]Xg, Double[]Yg)
{
CubSpline(Xe, Ye, Ne, a, b, c, d);
Int32 L = 1;
Double h = (bl - al) / Ngr;
Xg[0] = al;
//Yg[0] = a[L] + b[L] * (Xg[0] - Xe[L]) + c[L] * Math.Pow(Xg[0] - Xe[L], 2) / 2 + d[L] * Math.Pow(Xg[0] - Xe[L], 2) * (Xg[0] - Xe[L]) / 6;
for (int i = 0; i <= Ngr - 1 ; i++)
{
Yg[i] = a[L] + b[L] * (Xg[i] - Xe[L]) + c[L] * Math.Pow(Xg[i] - Xe[L], 2) / 2 + d[L] * Math.Pow(Xg[i] - Xe[L], 2) * (Xg[i] - Xe[L]) / 6;
Xg[i + 1] = Xg[i] + h;
if (Xg[i] > Xe[L]) L++;
}
}