Как реализовать решение квадратного уравнения, если дискриминант отрицательный? - C#

Узнай цену своей работы

Формулировка задачи:

Здравствуйте! Подскажите, пожалуйста, как реализовать решение квадратного уравнения, если дискриминант отрицательный? Очень прошу о помощи, вся программа рабоатет нормально, а с комплексными числами не могу справиться..

Решение задачи: «Как реализовать решение квадратного уравнения, если дискриминант отрицательный?»

textual
Листинг программы
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. using System.Threading.Tasks;
  6.  
  7. namespace SquareRoot
  8. {
  9.  
  10.     public class Complex : IComparable<Complex>
  11.     {
  12.         public double Real { get; set; }
  13.         public double Imaginary { get; set; }
  14.  
  15.         public Complex()
  16.         {
  17.  
  18.         }
  19.  
  20.         public Complex(double real)
  21.         {
  22.             Real = real;
  23.             Imaginary = 0;
  24.         }
  25.  
  26.         public Complex(double real, double imaginary)
  27.         {
  28.             Real = real;
  29.             Imaginary = imaginary;
  30.         }
  31.  
  32.         public static Complex operator +(Complex a, Complex b)
  33.         {
  34.             return new Complex()
  35.             {
  36.                 Imaginary = a.Imaginary + b.Imaginary,
  37.                 Real = a.Real + b.Real
  38.             };
  39.         }
  40.  
  41.         public static Complex operator -(Complex a, Complex b)
  42.         {
  43.             return new Complex()
  44.             {
  45.                 Imaginary = a.Imaginary - b.Imaginary,
  46.                 Real = a.Real - b.Real
  47.             };
  48.         }
  49.  
  50.         public static Complex operator +(Complex a, double k)
  51.         {
  52.             return new Complex()
  53.             {
  54.                 Imaginary = a.Imaginary,
  55.                 Real = a.Real + k
  56.             };
  57.         }
  58.  
  59.         public static Complex operator -(Complex a, double k)
  60.         {
  61.             return new Complex()
  62.             {
  63.                 Imaginary = a.Imaginary,
  64.                 Real = a.Real - k
  65.             };
  66.         }
  67.  
  68.         // Перегрузка оператора равенства. ВАЖНО, т.к. сравниваются числа с плавающей запятой, то сравнивать нужно их разницу по модулю
  69.         //
  70.         public static bool operator ==(Complex a, Complex b)
  71.         {
  72.             if ((Math.Abs(a.Imaginary - b.Imaginary) < 0.0000001 && Math.Abs(a.Real - b.Real) < 0.0000001))
  73.             {
  74.                 return true;
  75.             }
  76.             return false;
  77.         }
  78.  
  79.         public static bool operator !=(Complex a, Complex b)
  80.         {
  81.             if (Math.Abs(a.Imaginary - b.Imaginary) > 0.0000001 && Math.Abs(a.Real - b.Real) > 0.0000001)
  82.             {
  83.                 return true;
  84.             }
  85.             return false;
  86.         }
  87.  
  88.  
  89.         public override bool Equals(System.Object obj)
  90.         {
  91.             if (obj == null)
  92.             {
  93.                 return false;
  94.             }
  95.  
  96.             Complex n = obj as Complex;
  97.             if ((System.Object)n == null)
  98.             {
  99.                 return false;
  100.             }
  101.  
  102.             return (Math.Abs(Imaginary - n.Imaginary) < 0.0000001) && (Math.Abs(Real - n.Real) < 0.0000001);
  103.         }
  104.  
  105.         public bool Equals(Complex n)
  106.         {
  107.             if ((object)n == null)
  108.             {
  109.                 return false;
  110.             }
  111.  
  112.             return (Math.Abs(Imaginary - n.Imaginary) < 0.0000001) && (Math.Abs(Real - n.Real) < 0.0000001);
  113.         }
  114.  
  115.         // Указаний по реализации нет. Реализован таким образом
  116.         public override int GetHashCode()
  117.         {
  118.             return (int)Imaginary ^ (int)Real;
  119.         }
  120.  
  121.         public override string ToString()
  122.         {
  123.             if (Imaginary == 0) return string.Format("{0}", Math.Round(Real, 6));
  124.             return string.Format("{0} + {1}i", Math.Round(Real, 6), Math.Round(Imaginary, 6));
  125.         }
  126.  
  127.  
  128.         // Возможно лучшее решение. Т.к. указаний не дано по сравнению комплексных чисел (только равенства и неравенство),
  129.         // то реализовано таким образом
  130.         public int CompareTo(Complex other)
  131.         {
  132.             if (this == other) return 0;
  133.  
  134.             if (Math.Abs(this.Real - other.Real) < 0.0000001)
  135.             {
  136.                 if (this.Imaginary - other.Imaginary > 0) return 1;
  137.                 else return -1;
  138.             }
  139.  
  140.             if (this.Real > other.Real) return 1;
  141.             return -1;
  142.         }
  143.  
  144.         // Задания по перегрузки операторов умножения и деления также нет, но вот они на всякий пожарный.
  145.  
  146.         public static Complex operator *(Complex a, Complex b)
  147.         {
  148.             return new Complex()
  149.             {
  150.                 Real = a.Real * b.Real - a.Imaginary * b.Imaginary,
  151.                 Imaginary = a.Real * b.Imaginary + a.Imaginary * b.Real
  152.             };
  153.         }
  154.  
  155.         public static Complex operator *(Complex a, double d)
  156.         {
  157.             return new Complex()
  158.             {
  159.                 Real = a.Real * d,
  160.                 Imaginary = a.Imaginary * d
  161.             };
  162.         }
  163.  
  164.         public static Complex operator /(Complex a, Complex b)
  165.         {
  166.             return new Complex()
  167.             {
  168.                 Real = (a.Real * b.Real + a.Imaginary * b.Imaginary) / (b.Real * b.Real + b.Imaginary * b.Imaginary),
  169.                 Imaginary = (a.Imaginary * b.Real - a.Real * b.Imaginary) / (b.Real * b.Real + b.Imaginary * b.Imaginary)
  170.             };
  171.         }
  172.  
  173.         public static Complex operator /(Complex a, double d)
  174.         {
  175.             return new Complex()
  176.             {
  177.                 Real = a.Real / d,
  178.                 Imaginary = a.Imaginary / d
  179.             };
  180.         }
  181.     }
  182.  
  183.     public static class SquareRootEquation
  184.     {
  185.         public static void Solve(double a, double b, double c)
  186.         {
  187.             double D = b*b - 4*a*c;
  188.             if (Math.Abs(D)<0.00001)
  189.             {
  190.                 double x = -b/(2*a);
  191.                 Console.WriteLine("Уравнение имеет один корень х = {0}",x);
  192.             }
  193.             else if (D>0)
  194.             {
  195.                 double x1 = (-b + Math.Sqrt(D)) / (2 * a);
  196.                 double x2 = (-b - Math.Sqrt(D)) / (2 * a);
  197.                 Console.WriteLine("Уравнение имеет два вещественных корня х1 = {0}; х2 = {1};",x1,x2);
  198.             }
  199.             else
  200.             {
  201.                 Complex D1 = new Complex(0, Math.Sqrt(Math.Abs(D)));
  202.                 Complex D2 = new Complex(0, -1*Math.Sqrt(Math.Abs(D)));
  203.                 Complex x1 = (D1 - b) / (2 * a);
  204.                 Complex x2 = (D2 - b) / (2 * a);
  205.                 Console.WriteLine("Вещественных (действительных) корней нет, однако существуют два комплексных корня х1 = {0}; х2 = {1};", x1, x2);
  206.  
  207.             }
  208.         }
  209.     }
  210.  
  211.     class Program
  212.     {
  213.         static void Main(string[] args)
  214.         {
  215.             SquareRootEquation.Solve(2,-1,2);
  216.             Console.ReadLine();
  217.         }
  218.     }
  219. }

ИИ поможет Вам:


  • решить любую задачу по программированию
  • объяснить код
  • расставить комментарии в коде
  • и т.д
Попробуйте бесплатно

Оцени полезность:

12   голосов , оценка 3.75 из 5

Нужна аналогичная работа?

Оформи быстрый заказ и узнай стоимость

Бесплатно
Оформите заказ и авторы начнут откликаться уже через 10 минут
Похожие ответы