Реализация метода Рунге-Кутты для параллельного решения системы ОДУ - C#
Формулировка задачи:
Доброго времени суток. Коллеги, не найдется ли у кого реализации метода Рунге-Кутты для решения систем ОДУ на C#, который можно было бы распараллелить? Ну или просто реализации, а над параллельностью сам подумаю.
Заранее спасибо!)
Решение задачи: «Реализация метода Рунге-Кутты для параллельного решения системы ОДУ»
textual
Листинг программы
class Program { public delegate double Function(double x, double y); #region Ordinary Differential Equations - Methods public static double ODE_Euler(Function f, double x0, double y0, double h, double x) { double xnew, ynew, result = double.NaN; if (x <= x0) result = y0; else if (x > x0) { do { if (h > x - x0) h = x - x0; ynew = y0 + f(x0, y0) * h; xnew = x0 + h; x0 = xnew; y0 = ynew; } while (x0 < x); result = ynew; } return result; } public static double ODE_RungeKutta2(Function f, double x0, double y0, double h, double x) { double xnew, ynew, k1, k2, result = double.NaN; if (x == x0) result = y0; else if (x > x0) { do { if (h > x - x0) h = x - x0; k1 = h * f(x0, y0); k2 = h * f(x0 + 0.5 * h, y0 + 0.5 * k1); ynew = y0 + k2; xnew = x0 + h; x0 = xnew; y0 = ynew; } while (x0 < x); result = ynew; } return result; } public static double ODE_RungeKutta4(Function f, double x0, double y0, double h, double x) { double xnew, ynew, k1, k2, k3, k4, result = double.NaN; if (x == x0) result = y0; else if (x > x0) { do { if (h > x - x0) h = x - x0; k1 = h * f(x0, y0); k2 = h * f(x0 + 0.5 * h, y0 + 0.5 * k1); k3 = h * f(x0 + 0.5 * h, y0 + 0.5 * k2); k4 = h * f(x0 + h, y0 + k3); ynew = y0 + (k1 + 2 * k2 + 2 * k3 + k4) / 6; xnew = x0 + h; x0 = xnew; y0 = ynew; }while (x0 < x); result = ynew; } return result; } public static double ODE_RungeKuttaFehlberg(Function f, double x0, double y0, double x, double h, double tolerance) { double xnew, ynew, hnew, k1, k2, k3, k4, k5, k6; double hmin = 0.0001; double hmax = 0.5; if (h > hmax) h = hmax; if (h < hmin) h = hmin; while (x0 < x) { k1 = h * f(x0, y0); k2 = h * f(x0 + 0.25 * h, y0 + 0.25 * k1); k3 = h * f(x0 + 3 * h / 8, y0 + 3 * k1 / 32 + 9 * k2 / 32); k4 = h * f(x0 + 12 * h / 13, y0 + 1932 * k1 / 2197 - 7200 * k2 / 2197 + 7296 * k3 / 2197); k5 = h * f(x0 + h, y0 + 439 * k1 / 216 - 8 * k2 + 3680 * k3 / 513 - 845 * k4 / 4104); k6 = h * f(x0 + 0.5 * h, y0 - 8 * k1 / 27 + 2 * k2 - 3544 * k3 / 2565 + 1859 * k4 / 4104 - 11 * k5 / 40); double error = Math.Abs(k1 / 360 - 128 * k3 / 4275 - 2197 * k4 / 75240 + k5 / 50 + 2 * k6 / 55) / h; double s = Math.Pow(0.5 * tolerance / error, 0.25); if (error < tolerance) { ynew = y0 + 25 * k1 / 216 + 1408 * k3 / 2565 + 2197 * k4 / 4104 - 0.2 * k5; xnew = x0 + h; x0 = xnew; y0 = ynew; } if (s < 0.1) s = 0.1; if (s > 4) s = 4; hnew = h*s; h = hnew; if (h > hmax) h = hmax; if (h < hmin) h = hmin; if (h > x - x0) h = x - x0; } return y0; } #endregion #region Ordinary Differential Equations - Test functions static double f(double x, double y) { return y*Math.Cos(x); } static double dx(double x, double y, double z) { return 10.0 * (y - x); } static double dy(double x, double y, double z) { return x * (28.0 - z) - y; } static double dz(double x, double y, double z) { return x * y - 8.0 * z / 3.0; } static void TestEuler() { double h = 0.001; double x0 = 0.0; double y0 = 1.0; Console.WriteLine("\n Results from Euler's method with h = {0}\n", h); double result = y0; for (int i = 0; i < 11; i++) { double x = 0.1 * i; result = ODE_Euler(f, x0, result, h, x); double exact = Math.Exp(Math.Sin(x)); if (i % 5 == 0) Console.WriteLine(" x = {0:n1}, y = {1:e12}, exact = {2:e12}", x, result, exact); x0 = x; } } static void TestRungeKutta2() { double h = 0.001; double x0 = 0.0; double y0 = 1.0; Console.WriteLine("\n Results from the 2nd-order Runge-Kutta method with h = {0}\n", h); double result = y0; for (int i = 0; i < 11; i++) { double x = 0.1 * i; result = ODE_RungeKutta2(f, x0, result, h, x); double exact = Math.Exp(Math.Sin(x)); if (i % 5 == 0) Console.WriteLine(" x = {0:n1}, y = {1:e12}, exact = {2:e12}", x, result, exact); x0 = x; } } static void TestRungeKutta4() { double h = 0.001; double x0 = 0.0; double y0 = 1.0; Console.WriteLine("\n Results from the 4th-order Runge-Kutta method with h = {0}\n", h); double result = y0; for (int i = 0; i < 11; i++) { double x = 0.1 * i; result = ODE_RungeKutta4(f, x0, result, h, x); double exact = Math.Exp(Math.Sin(x)); if (i % 5 == 0) Console.WriteLine(" x = {0:n1}, y = {1:e12}, exact = {2:e12}", x, result, exact); x0 = x; } } static void TestRungeKuttaFehlberg() { double h = 0.2; double x0 = 0.0; double y0 = 1.0; Console.WriteLine("\n Results from the fourth-order Runge-Kutta-Fehlberg method with h = {0}\n", h); double result = y0; for (int i = 0; i < 11; i++) { double x = 0.1 * i; result = ODE_RungeKuttaFehlberg(f, x0, result, x, h, 1e-8); double exact = Math.Exp(Math.Sin(x)); if (i%5==0) Console.WriteLine(" x = {0:n1}, y = {1:e12}, exact = {2:e12}", x, result, exact); x0 = x; } } static void TestEulerCoupledODE() { double x = 0.0, y = 5.0, z = 10.0; //initial conditions double dt = 0.001; //step size Console.WriteLine("\n Results from a coupled ODE using Euler's method\n"); for (int i = 0; i < 100; i++) { double xnew = x + dx(x, y, z) * dt; double ynew = y + dy(x, y, z) * dt; double znew = z + dz(x, y, z) * dt; x = xnew; y = ynew; z = znew; Console.WriteLine(" x = {0:n1}, y = {1:e12}, z = {2:e12}", x, y, z); } } #endregion static void Main(string[] args) { TestEuler(); TestRungeKutta2(); TestRungeKutta4(); TestRungeKuttaFehlberg(); TestEulerCoupledODE(); Console.ReadLine(); } }
ИИ поможет Вам:
- решить любую задачу по программированию
- объяснить код
- расставить комментарии в коде
- и т.д